scprep_build.Rd
This function builds an ExpressionSet, Seurat, or SingleCellExperiment object with scRNA data
scprep_build(
sample_paths = NULL,
input_data = FALSE,
annotation = NULL,
file_type = "h5",
gene_id = "symbol",
vdj = FALSE,
cite = FALSE,
cite_ignore = TRUE,
atac = FALSE,
atac_ignore = TRUE,
output_type = "eset",
verbose = TRUE
)
Character vector of paths to filtered_feature_bc_matrix.h5 for all samples in project
Logical; Default is FALSE to ignore; if TRUE, input_data should be a list of pre-loaded count matrices (instead of file paths) - IMPORTANT: if you use this form of input, it will override 'sample_paths' argument! If the 'Sample_ID' column in annotation.csv does not match the names of the elements of this list, the 'annotation' input will be ignored and your metadata will only contain the names of the elements in this list (if the list elements are NOT named, they will be give numeric IDs corresponding to order of the list)
Matrix of project-specific annotation.csv
File type ("h5" or "mtx"); if "mtx", the following files must be in sample directory: matrix.mtx, barcodes.tsv, genes.tsv or features.tsv
Gene ID type ("ensembl" or "symbol")
Data is multimodal RNA & VDJ
Data is multimodal RNA & Protein
FALSE to ignore; Default is TRUE, ignore the "Antibody Capture" slot in the h5 file input and only extract/store the "Gene Expression" slot; This is only relevant if your data contains both RNA and protein modalities and you want to ignore the protein modality
Data is multimodal RNA & ATAC
FALSE to ignore; Default is TRUE, ignore the "ATAC" slot in the h5 file input and only extract/store the "Gene Expression" slot; This is only relevant if your data contains both RNA and ATAC modalities and you want to ignore the ATAC modality
Output object type ("eset" (ExpressionSet), "seurat", or "sce" (SingleCellExperiment))
Logical; if TRUE (default), print progress messages; if FALSE, suppress output
ExpressionSet, Seurat, or SingleCellExperiment object containing expression data for all samples & annotation
if (FALSE) {
# Build ExpressionSet (default)
dataset <- scprep_build(sample_paths=sample_paths, input_data=FALSE, annotation=annotation,
file_type="h5", gene_id="symbol", vdj=FALSE,
cite=FALSE, atac=FALSE)
}